阅读量:117
Flink CDC Kafka 是一个用于从 Kafka 捕获变更数据并将其流式传输到 Flink 的库。要对 Flink CDC Kafka 中的数据进行排序,您需要根据变更数据的键进行分组,然后使用 Flink 的窗口函数对每个组内的数据进行排序。
以下是一个简单的示例,说明如何使用 Flink CDC Kafka 对数据进行排序:
- 首先,添加 Flink CDC Kafka 依赖项到您的项目中。如果您使用的是 Maven,可以在
pom.xml文件中添加以下依赖项:
<dependency>
<groupId>com.ververica</groupId>
<artifactId>flink-connector-kafka-cdc_2.11</artifactId>
<version>1.14.0</version>
</dependency>
- 创建一个 Flink 程序,使用
KafkaSourceBuilder从 Kafka 读取变更数据。这里我们假设您的 Kafka 主题名为my-topic,并且已经配置了相应的 Kafka 连接器。
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
FlinkKafkaConsumer kafkaConsumer = new FlinkKafkaConsumer<>("my-topic", new SimpleStringSchema(), properties);
DataStream stream = env.addSource(kafkaConsumer);
- 解析变更数据,提取出键和值。这里我们假设变更数据的格式为 JSON,其中键和值用逗号分隔。
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import java.util.Properties;
public class FlinkCdcKafkaSort {
public static void main(String[] args) throws Exception {
final StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();
Properties properties = new Properties();
properties.setProperty("bootstrap.servers", "localhost:9092");
properties.setProperty("group.id", "flink-cdc-kafka-sort");
FlinkKafkaConsumer kafkaConsumer = new FlinkKafkaConsumer<>("my-topic", new SimpleStringSchema(), properties);
DataStream stream = env.addSource(kafkaConsumer);
DataStream changeRecords = stream
.map(new ChangeRecordParser())
.keyBy(ChangeRecord::getKey)
.window(TumblingEventTimeWindows.of(Time.minutes(5)))
.apply(new SortFunction());
changeRecords.print();
env.execute("Flink CDC Kafka Sort");
}
}
- 创建一个
ChangeRecordParser类,用于解析变更数据。这个类需要实现org.apache.flink.api.common.functions.MapFunction接口。
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import java.util.Properties;
public class FlinkCdcKafkaSort {
public static void main(String[] args) throws Exception {
// ... 省略其他代码 ...
}
public static class ChangeRecordParser implements MapFunction {
@Override
public ChangeRecord map(String value) throws Exception {
// 解析变更数据,提取键和值
String[] parts = value.split(",");
String key = parts[0];
String value = parts[1];
// 创建并返回 ChangeRecord 对象
return new ChangeRecord(key, value);
}
}
}
- 创建一个
ChangeRecord类,用于表示变更记录。这个类需要实现java.io.Serializable接口,并包含键和值的属性。
import java.io.Serializable;
public class ChangeRecord implements Serializable {
private String key;
private String value;
public ChangeRecord(String key, String value) {
this.key = key;
this.value = value;
}
public String getKey() {
return key;
}
public String getValue() {
return value;
}
}
- 创建一个
SortFunction类,用于对变更记录进行排序。这个类需要实现org.apache.flink.streaming.api.windowing.windows.WindowFunction接口。
import org.apache.flink.api.common.typeinfo.TypeInformation;
import org.apache.flink.api.java.typeutils.TypeExtractor;
import org.apache.flink.streaming.api.datastream.DataStream;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaConsumer;
import org.apache.flink.streaming.util.serialization.SimpleStringSchema;
import org.apache.flink.streaming.api.windowing.time.Time;
import org.apache.flink.streaming.api.windowing.windows.TimeWindow;
import org.apache.flink.streaming.api.functions.windowing.WindowFunction;
import org.apache.flink.util.Collector;
import java.util.List;
public class FlinkCdcKafkaSort {
// ... 省略其他代码 ...
public static class SortFunction extends WindowFunction {
@Override
public void apply(String key, TimeWindow window, Iterable input, Collector out) {
List sortedRecords = input.stream()
.sorted((record1, record2) -> record1.getValue().compareTo(record2.getValue()))
.collect(Collectors.toList());
for (ChangeRecord record : sortedRecords) {
out.collect(new SortedChangeRecord(record.getKey(), record.getValue()));
}
}
}
}
- 创建一个
SortedChangeRecord类,用于表示已排序的变更记录。这个类需要实现java.io.Serializable接口,并包含键和值的属性。
import java.io.Serializable;
public class SortedChangeRecord implements Serializable {
private String key;
private String value;
public SortedChangeRecord(String key, String value) {
this.key = key;
this.value = value;
}
public String getKey() {
return key;
}
public String getValue() {
return value;
}
}
现在,当您运行 Flink 程序时,它将从 Kafka 读取变更数据,根据键进行分组,并使用窗口函数对每个组内的数据进行排序。最后,它将输出已排序的变更记录。